FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria.

نویسندگان

  • A Tzagoloff
  • J Jang
  • D M Glerum
  • M Wu
چکیده

Respiratory defective mutants of Saccharomyces cerevisiae previously assigned to complementation group G178 are characterized by an abnormally low ratio of FAD/FMN in mitochondria. A nuclear gene, designated FLX1, was selected from a yeast genomic library, based on its ability to confer wild-type growth properties to a representative G178 mutant. Genetic evidence has confirmed that the flavin nucleotide imbalance of G178 mutants is caused by mutations in FLX1. The sequence of FLX1 is identical to a reading frame recently reported to be present on yeast chromosome IX (GenBank Z47047). The sequence and tripartite repeat structure of the FLX1 product (Flx1p) indicate it is a member of a protein family consisting of mitochondrial substrate and nucleotide carriers. In yeast, FAD synthetase is present in the soluble cytoplasmic protein fraction but not in mitochondria. Riboflavin kinase, the preceding enzyme in flavin biosynthesis, is present in both subcellular fractions. The absence of FAD synthetase in mitochondria implies that FAD is imported from the cytoplasm. The lower concentration of mitochondrial FAD in flx1 mutants suggests that Flx1p is involved in flavin transport, a role that is also supported by biochemical evidence indicating more efficient flux of FAD across mitochondrial membrane vesicles prepared from wild-type strains than membrane vesicles from flx1 mutants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export.

We have studied the functional steps by which Saccharomyces cerevisiae mitochondria can synthesize FAD from cytosolic riboflavin (Rf). Riboflavin uptake into mitochondria took place via a mechanism that is consistent with the existence of (at least two) carrier systems. FAD was synthesized inside mitochondria by a mitochondrial FAD synthetase (EC 2.7.7.2), and it was exported into the cytosol v...

متن کامل

SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability

The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we survey...

متن کامل

Isolation, Subtype Determination, Cloning and Expression of HBsAg Gene from an Iranian Carrier in Saccharomyces cerevisiae

The Hepatitis B Surface antigen ( HBsAg) gene was isolated from an Iranian HBeAg positive carrier by PCR. The gene was cloned in pUC19 for sequencing and pYES2 for expression in Saccharomyces cerevisiae, which pNF1 and pDF3 constructs were made respectively. The sequencing data showed that the isolated HBsAg gene shared more than 90% homology with the ayw subtype. The pDF3 was transferred into ...

متن کامل

Effects of yeast nucleotide on growth performance, serum immune index and muscle composition of Ancherythroculter nigrocauda Yih & Wu

A 50-day feeding trial was conducted to evaluate the effects of yeast nucleotide in diets on growth performance, serum immune indices and muscle composition of Ancherythroculter nigrocauda (mean initial body weight, 23.30±0.59 g). Seven isonitrogenous (approximately 42.76% crude protein) and isoenergetic (17.43 KJ g−1 gross energy) experimental diets with varying levels of yeast nucleotide (0[c...

متن کامل

Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae.

The FAD1 gene of Saccharomyces cerevisiae has been selected from a genomic library on the basis of its ability to partially correct the respiratory defect of pet mutants previously assigned to complementation group G178. Mutants in this group display a reduced level of flavin adenine dinucleotide (FAD) and an increased level of flavin mononucleotide (FMN) in mitochondria. The restoration of res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 13  شماره 

صفحات  -

تاریخ انتشار 1996